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Note 

On the Solution of a Neumann Problem 

for an Inhomogeneous Laplace Equation* 

Frequently, problems encountered in fluid dynamics involve an inhomogeneous 
Laplace equation, sometimes called a Poisson equation, 

A+== -f (1) 

in region Sz. Most commonly, these boundary value problems are completed as 
Dirichlet problems, that is, the value of the function is specified on the boundary 
curve (see Fig. l), 

4 = g(s) (2) 

on cr. This type of problem arises, for example, when determining the stream 
function 4, corresponding to a given vorticity field J Less commonly, these 
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FIG. 1. Solution surface. 
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problems are completed as Neumann problems, that is, where the value of the 
normal derivative is specified on the boundary curve 

an+ = g(s) (3) 

on 0. This type of problem arises when determining the pressure 4, of an incom- 
pressible fluid corresponding to a given stream function field. The inhomogeneous 
function f, is, in this case, a simple function of the stream function as has been 
demonstrated by Roache [l]. Such a problem also arises when determining the 
velocity potential 4, for a compressible flow in the special case where the effects of 
compressibility are expressible as a spatial function,f. An application of this type 
has been shown by one of the authors [2]. 

It should be noted that for the Neumann problem f and g may not be chosen 
independently, but rather as a consequence of Green’s first identity, they must 
satisfy the auxiliary condition, 

if a solution is to exist. Derivation of this condition is found in many texts dealing 
with partial differential equations, including those of Sneddon [3] and Duff and 
Naylor [4]. 

General analytic formulas, giving the solution to each of the aforementioned 
problems, can be found in mathematical texts such as Duff and Naylor [4]. Such 
formulas always contain either Green or Neumann functions, which are readily 
determinable only for the most basic geometric configurations of Q. Even in the 
cases where the proper function is available, it is common for the formulas to be 
given in terms of a slowly convergent, infinite series, which may be either too 
cumbersome or too lengthy to utilize. Therefore, it is not unusual to approximate 
the solutions to these problems by finite difference methods. Due primarily to its 
more frequent occurrence, finite difference methods of approaching the Dirichlet 
problem have received extensive mention in the literature. In contrast, the number 
of works directly applicable to the Neumann problem is rather sparse, and these 
works are widely scattered among the learned journals. 

Three finite difference approaches to the Neumann problem are prevalent in the 
literature. In the approach exemplified by the work of Friedrichs and Keller [5], 
the difference equations are derived from a variational principle for the difference 
solution. In the approach exemplified by the work of Bramble and Hubbard [6], 
special constructions are employed to set up the finite difference boundary con- 
ditions, but the interior points are treated in a standard manner. In the approach 
with which this note is most concerned, standard, centered, second-order accurate, 
finite difference expressions are utilized both in the interior and on the boundary 
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of the field. The solution to the resultant linear system is most easily obtained by an 
iterative relaxation procedure due to the banded nature of the matrix. Such an 
iterative scheme is not always as straight forward as in the Dirichlet problem. 

It is a well-known property of the Neumann problem that, although the shape 
of its solution surface (Fig. 1) is unique, the location of this solution surface is not 
fixed in space, as in the Dirichlet problem. There are an infinity of solution surfaces, 
each differing from the others by an additive constant. This property is the result 
of the existence of a zero eigenvalue in the solution of the problem. When the 
finite difference analog of the Neumann problem is formulated, the matrix of the 
resultant, linear system is singular having rank one less than its order. Mitchell [7] 
has shown that for the homogeneous equation the solution to the linear system 
plus the auxiliary condition involves an arbitrary additive constant. This result 
continues to be valid when the inhomogeneous equation is involved, so that the 
solution to the finite difference analog is also unique only to within an additive 
constant. As a result, care must be exercised when formulating an iterative relax- 
ation scheme to approximate the solution to a Neumann problem. 

Using the standard iteration scheme, 

(W (AYY 
$5 = 2((4x)2 + (Ay)2) [ 

f&$“;lfj + +z”=lti 
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-I- f 1 (5) 
to compute a new value at each point on the mesh will yield an approximation to 
a solution surface. Applying the same formula again will produce another approx- 
imation to a solution surface. In this procedure no constraint has been introduced 
which would require the solution surfaces approximated by successive iterations 
to be identical. Neither should it be necessary to enter such a constraint when using 
the Jacobi scheme. It is however convenient for successive iterations to approximate 
the same solution surface since the change between successive iterations can then 
be used as an indication of convergence. By noting that two solution surfaces, 
passing through the same point, must be identical, a method of introducing the 
desired constraint becomes evident. A point is chosen at which the solution surface 
will be required to pass through an arbitrary assigned value. New values are then 
computed at all points on the mesh, including the specially chosen point. The 
resultant approximation to the solution surface is shifted by adding a constant to 
the computed value at each point. The magnitude of the constant is chosen to be 
such as to insure that the value at the special point is equal to the previously 
assigned value. In this manner, successive iterates may be made to approximate the 
same solution surface. 

At this point, an often proposed alternative method of insuring that successive 
iterations approximate the same solution surface should be considered. This 
method assigns a value to a particular point in the mesh and then holds the value 
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at this point constant through successive iterations. Unlike the method discussed 
above the value at this point is not recomputed and then brought back to its 
assigned value by shifting the entire solution surface. Rather, a new value is never 
computed at this point. It is proposed that since the value at the chosen point is 
used in the computation of adjacent points, the solution will be tied to one solution 
surface in much the same manner as in a Dirichlet problem. These authors and 
others [8] have found this method to be ineffective, largely due to the formation of 
a singularity at the chosen point. The explanation of this phenomena is deceptively 
simple. By failing to recompute the value at this point the restriction that the partial 
differential equation must be satisfied is omitted at this point. Thus the link with 
any solution surface is lost at this point, and the ineffectiveness of the method is 
understandable. 

Once a Jacobi type iteration scheme, which successively approximates the same 
solution surface, has been properly developed, a minor modification converts it 
to the more efficient Gauss-Seidel type of scheme. In this scheme the most recent 
approximations are used as soon as they become available during an iteration. The 
approximations to the partial derivatives, 

where N is the current iteration and the field is swept in increasing i and j, now 
contain values from both the current and the previous iterations. It is clearly 
necessary that both the current and previous iterations give values approximating 
the same solution surface, if these expressions are to have the desired significance. 
By choosing the point which is computed first as the point which will be reduced 
to a constant value during each iteration, the difference between the two solution 
surfaces may be computed at the start of the scheme. This difference may then be 
used to correct the value at each point in the field as it is computed. 

(W CAYI 
+G = 2((dx)” + (Ay)2) [ 

&z + &,j + &xl + &y-, 
(W CAyI +f]-K (8) 

where 

and 

is computed from Jacobi scheme. 
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The technique may be made even more efficient by developing the counterpart 
of the scheme known as successive over-relaxation (S.O.R.). The extension from 
the Gauss-Seidel technique to S.O.R. is completely analogous to that given by 
Smith [9] for a Dirichlet problem. 

Fortran computer programs, utilizing both the Jacobi and the Gauss-Seidel type 
iteration schemes, were developed. Convergence to a solution surface was obtained 
for a sample problem on a rectangular grid containing 1600 grid points. In com- 
parative runs the Gauss-Seidel type scheme attained the same level of convergence 
as the Jacobi type scheme in approximately half the number of iterations. No 
attempt was made to utilize the S.O.R. scheme, due to the considerable uncertainty 
associated with the computation of the optimum over-relaxation factor. 
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